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Abstract: Deep learning methods have achieved excellent detection results in various
road databases. However, due to some harsh road conditions, these network models still
suffer from some abnormal phenomena such as hollowness, unsmooth edges and so on. To
address this problem, we improve the road detection network via a novel convolutional-
kernel-based conditional random field (CK-CRF), which designs some special
convolutional kernels for hollowness scanning. Experiments on two open road datasets
show that the proposed method outperforms the-state-of-the-art models by an obvious
margin, including the famous deeplab network with a traditional conditional random fields
based on fully-connected layers.

1. Introduction

Road detection has a significant meaning to auto-driving technology. Due to the influences from
various illumination, shadows and waterlogging, it remains far away from being solved.

Current detection methods can be divided into three kinds: model-based, features-based and
learning-based. In the first-kind methods: Wang et al. [1] utilized B-spline curve to build the road
model, which can quickly distinguish different road shapes and build matching models. Alvarez et
al. [2] proposed an adaptive road geometry model, which can adjust the model by the analysis on
the current and previously-collected road scenes. To alleviate the influence of illumination, various
features were proposed by the second-kind methods: Alvarez et al. [3] used color features, extracted
light-source-invariant features function to classify road pixels. Tsai et al. [4] applied three road clue
types (road smoothness, color and lane line), and conditional random field (CRF) to integrate all
features for the urban road detection. In the third-kind frameworks, Lee et al. [5] proposed a multi-
task network for road detection, which can detect and identify road and traffic signs simultaneously
in extreme weathers by using the information of vanishing points. Inspired by semantic
segmentation and instance segmentation, Neven et al. [6] proposed a multi-task network model with
branch structure, which converted the lane detection problem into an instance segmentation
problem, and treated each lane as a separate instance.

The fully-connected conditional random field (FC-CRF) is the most popular technique to
optimize the detection results, which uses a fully convolution neural network to minimize the
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operation of conditional random field in the neural network model, such as deeplabvl [7]. However,
it has three defects: 1. FC-CRF cannot give an end-to-end result; 2.The computing of FC-CRF must
be iterated many times. 3. FC-CRF cannot be used to improve the training of the back-bone network.

To address these problems, we propose a convolutional-kernel-based conditional random field
(CK-CRF), which realizes the operation of conditional random field based by an extra
convolutional neural layer connected to the back-bone network. The main contributes are listed as:

1) The energy function of the CK-CRF is combined into the loss of the back-bone network,
making their training be a united one.

2) The special design of the fixed convolutional-kernels make it suitable for the reducing of a
large variety of road defects.

3) The CK-CREF is only used and trained in the training stage, and will not affect the testing
speed of any practical applications.

2. Related Work
2.1.FCRN

The fully convolution regression neural network (FCRN) is proposed to improve the fully
convolution neural network (FCN). The output of FCRN is the prediction of the target spacial
density distribution on the image. The density distribution is usually the same as the shape of the
target. The value of each pixel is between 0 and1. A value close to 1 means that the pixel belongs
most likely to the target region, otherwise, it is outside of the target.

In this paper, we use the U-net network as the back-bone of FCRN. The U-net model adopts the
traditional encoder decoder structure, which is characterized by some skip-connection structures.
The loss function uses the mean square error as equation (1):

LOSSpix(xlabelﬁ xout) = ”xlabel - xout”2 (l)
Where x4, 1s the sample in the calibration dataset S;, and x,,,; is the output of FCRN.

2.2.Conditional Random Field (CRF)

FCNs have excellent classification and precise positioning capabilities, but they cannot have both.
For example, the deep neural networks with the max-pooling layers have achieved excellent
classification accuracy in the classification tasks, but when faced with the problems of pixel-level
classification, such as semantic segmentation, the boundaries between different classification areas
will become confused and unable to accurately locate. To tackle this problem, deeplabvl combines
the FCN and probability graph model to develop the FC-CRF, which can enhance the boundary
location effect of the recognition area.
In deeplabvl, the energy function of the CRF used can be expressed as:

E(eryiﬁx) = Zi,l Qi(yin) ) + Zi,k Qij(yi'yjﬁx) (2)

0;(yix) = lly; — Zi”2 (3)

1, y; #vy;
(:-')ij(yl';y]':x) = M()’i;y]') an=1 W km(fi;fj)' ﬂ(YiJYj) = { Oy)-]l— y)-]] “4)
Wi T Jj
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Where z; € Z, Z = (21,23,--42y), Z represents the calibration picture, w,, is the weight of each
pixel, km(f of j) uses Gaussian kernel function to describe the relationship between pixel i and its
surrounding pixel j, and f; refers to the characteristic function of pixel i. In theory, the binary
potential ©;; exists in any two pixels of Y. It means that the CRF is fully connected in Y, so it’s
named fully-connected conditional random field (FC-CRF).

The unitary potential in FC-CRF is used for training the fully convolution neural network.
Binary potential energy judges the prediction probability or prediction category of pixel i by the
prediction probability or prediction category of pixel j around pixel i. The binary potential energy
optimizes the prediction results to the certain extent, but the use of fully-connected conditional
random field requires two stages of operation. First, we need to complete the training of the neural
network part, and then debug the fully connected condition random field.

Therefore, FC-CRF breaks the advantages of the end-to-end use of fully convolution neural
network. Not only that, FC-CRF optimizes based on the output of the network, which is limited and
cannot fundamentally solve the problems of hollowness and edge anomalies.

3. Proposed Method

We believe that when the target spacial density distribution of adjacent pixels changes greatly, there
will be holes in the middle of the road recognition area, spots in the no Road area and strange edge
shape, that is shown in output without CK-CRF of Figure 1. In order to address these problems, we
design a convolutional-kernel-based conditional random field to smooth the probability distribution
of FCRN output.

The energy function of CK-CREF is as equation (5):

P.(xpu) = Relu(Conv(xyyek(x,x;))) (5)

Where Conv() means to use convolution kernel k(xi,xj) to convolute the output x,,, of the
FCRN, and Relu() means to perform relu operation.

1
Lossg_crr(Xout) = ;Sum(P e(Xour)) (6)

Where n is the number of positive pixels in P,, and Sum() is the sum function.

el
exp ey *]J
llxi—x;])” )
Xi—Xj . .
exp (— TZ’) -1i=j

Where x; €Y, x; €0, 0 is a neighborhood of x; in the open interval (i —7,i+7). The

convolution kernel can be instantiated in scale 3*3 as follows:
0.0625 0.125 0.0625]

k(xi,xj) =

0.125 -0.75 0.125

0.0625 0.125 0.0625
The energy function is designed to smooth the target spacial density distribution. It can be seen

that there are quite different between output with CK-CRF and output without CK-CRF in Figure 1.
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Figure 1: Model illustration. (a) System structure; (b) Structure of CK-CREF.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Final result without
CK-CRF

Then the total loss of the network is:
w1Lossg_crr(Xoue) +
Lossall(xlabeb xout) = leabel €S; <w2LOSSpix(xlabelr xout)> (8)

Where x4, 1s the label in the calibration dataset S;, and x,,, is the output of network with input
Xin-

At this point, we add the optimization function of conditional random field to the network, so
that the probability distribution of the network output is smooth and not discrete. In Figure 1, we
can see that CK-CRF is composed of a convolution layer and a Relu layer, which is relatively
independent of the semantic segmentation recognition network and does not increase the scale of
network parameters. This feature enables CK-CRF could be placed at the output of various
semantic segmentation networks. CK-CRF is only used in the training phase, that makes it will not
affect the running speed of the network in the test stage or the practical stage.

Algorithm 1:
Input: Real image dataset Sg, label image dataset §;; Parameters to
be optimized w; Loss functions used include LOSSg_crr, LOSSpix;
Maximum times f3in first stage; Maximum times &4 in total; Input
images Xg obtained by random transformation in Sgi; Label images X
obtained by the same random in S§j.
1. For t<t,,, do
2. From the real picture dataset Sg, the input image Xgp is obtained
by randomly selecting iamges randomly, randomly cutting,
randomly rotating and randomly translating
3. Take Xgin as input and get output Xy, through network
4. If t<ty do
Calculate LosSyi(Xigper Xout)
Else do
Calculate Lossg(Xiapet Xout)
5. Update w, return to step 1
6. End for
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4. Experiment

In order to prove the performance of the proposed method, we did the experiment in two dataset:
driving recorder dataset (DRD) and remote sensing road dataset (RSRD).

In our experiment, we use mini-batch SGD and apply the Adam solver, with a learning rate of
0.001 for RSRD and 0.0001 for DRD.

4.1.Dataset

4.1.1. RSRD

The RSRD showed in Figure 2 contains 26 remote sensing images of urban roads with the size of
1500*1500. The maximum width of the road in the image is only 30 pixels, and there is a lot of
occlusion on the road area, such as trees, shadows. Therefore, the characteristics of RSRD is small
target and low resolution. We take a 128*128 image from the random position of the image as the
input of the network.

v/ ‘r
.,\' ] d"llll\

Figure 2: Remote sensing road dataset. This dataset is characterized by low resolution of small
targets. In the image, the maximum road width is 30 pixels, and the minimum is less than 5 pixels.
The difficulty of this data set lies in the limited information provided by the image and the
occlusion of objects.

4.1.2. DRD

This dataset showed in Figure 3 contains 2000 urban roads images with the size of 720p or 1080p
from driving recorder. The road scenes of image in various lighting conditions include various road
locations, such as crossroads in the city, T-junctions in front of railway stations. DRD is a large
target and high resolution dataset. We adjust the size of the picture to 1024 *512 as the input of the
network.
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Figure 3: Driving recorder dataset. The characteristic of database is large target with high resolution,
that is to say, the image is very clear, but the difficulty lies in the interference of different intensity
light.

4.2.Visualization Comparison

The test results on RSRD are shown in Figure 4. There are some empties and unsmooth edges on
the outputs from FCN and U-net, which is due to the shelter of vehicles and the shadow of buildings
on the road. For example, in the first line, the reason for the disconnection of the road identification
area on the U-net prediction result is that there is a shelter of buildings on the road. It can be seen
that, even after the optimization with FC-CRF of deeplab, the result is still not ideal which shown in
the fifth column. After using the CK-CRF, the output of the network is smooth, and the edge of
final threshold segmentation result 1s smooth and the empties are completely eliminated.

(a)I ge (b)Label  (¢)FCN  (d)U-net(e)Deeplab (f)Proposed

Figure 4: Visualization comparison in RSRD. There are holes, spots and unsmooth edges in the
final result of FCN and U-net. The FC-CRF of deeplab can slightly improve the prediction results.
CK-CREF provides much better prediction results.

The test results on the DRD are shown in Figure 5. The outputs of FCN and U-net are not
smooth and discrete, that there are some empties and unsmooth edges in the prediction results,
especially in the case of strong light interference. For example, in the second line, due to the lack of
light, there are spots and uneven edges on the right of the recognition area. And in the case of strong
backlight in the third line of Figure 5, empties appear in the middle of the recognition area. The
optimization result of deeplab is not good enough that there is progress in small details, but the
overall accuracy has not been greatly improved. Our proposed method can fundamentally optimize
the training effect. Then, we can see that the CK-CRF with FCRN have filled empties and
smoothing edges, and greatly improves the prediction accuracy of road identification area.
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(a) Image (b) Label (c)FCN (d) U-net (e)Deeplab (f) Proposed

Figure 5: Visualization comparison in DRD. In the environment of strong light, backlight or dark
road, there are some hollowness and unsmooth edges in the red box of FCN and U-net’s prediction
results. It has limited improvement for prediction results of deeplab. In contrast, the prediction
results of CK-CRF are better.

4.3.Quantitative Comparison

We measure this methods from two objective evaluation indicators: Intersection over Union (IoU)
and pixel accuracy (PA).

Table 1: Test results in the RSRD.

TIoU/% PA/%

FCN 58.04% 91.31%
U-net 65.56% 93.14%
deeplab 63.37% 92.83%
Proposed 67.91% 93.47%

From Table 1, we can see that the algorithm we proposed has the highest IoU value and the
highest PA value. On the original prediction accuracy (58.04%) of the FCN, CK-CRF increases it
by 9%, which is 4% higher than the FC-CRF. This shows that FCRN with CK-CRF has better
performance than deeplab with FC-CRF in the RSRD.

In the experimental results in Table 2, it can be seen that the algorithm we proposed is the best in
the DRD. On the original prediction accuracy of the FCN (69.93%), FCRN with CK-CRF increases
it by 15%, which is 7% higher than that of the deeplab. This shows that FCRN with CK-CRF has
better performance than deeplab with FC-CRF in the DRD.

Table 2: Test results in the RSRD.

TIoU/% PA/%

FCN 69.93% 94.87%
U-net 72.34% 95.82%
deeplab 78.43% 96.53%
Proposed 84.27% 97.66%
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5. Conclusions

In this paper, a convolutional-kernel-based conditional random field (CK-CRF) is proposed.
Experiments show that the CK-CRF with FCRN not only improves the prediction results of the
network, but also provides the optimization performance beyond the deeplab with FC-CRF. It does
not increase the scale of the network model and affect the running speed of the network model. In
the future work, the loss function of the CK-CRF should be further improved to obtain better

performance.
Our models and code are publicly available at https://github.com/fd851583/CK-CRF.
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